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Monte Carlo simulation of the Taylor-Couette 
flow of a rarefied gas 
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Institute of Mechanics and Biomechanics, Bulgarian Academy of Sciences, Sophia, Bulgaria 

Dipartimento di Matematica, Politecnico di Milano, Milano, Italy 

(Received 19 January 1993 and in revised form 14 May 1993) 

We report and discuss the results of a direct Monte Carlo simulation of the flow of a 
rarefied gas flowing between two cylinders when the inner one rotates. The formation 
of Taylor vortices is clearly exhibited. 

The next great era of awakening of human intellect may well produce a method 
of understanding the qualitative content of equations. Today we cannot. Today 
we cannot see that the water flow equations contain such things as the barber pole 
structure of turbulence that one sees between rotating cylinders. (From The 
Feynman Lectures on Physics.) 

1. Introduction 
While the problems related to the instability of fluids and their transition to 

turbulence have been studied for a long time in classical hydrodynamics, the 
corresponding problems in kinetic theory have been paid attention only recently. This 
circumstance is clearly related to the extremely complex character of such problems 
when attacked with the Boltzmann equation. It is clear, however, that the study of such 
problems might be of greater importance for understanding fundamental phenomena 
of instability and self-organization in molecular dynamics. Encouraged by the positive 
result of our previous investigation (Stefanov & Cercignani 1992; Cercignani & 
Stefanov 1992) of BCnard's instability by means of the direct simulation Monte Carlo 
method (DSMC), recently we discussed (Stefanov & Cercignani 1993) the fluctuations 
of the macroscopic quantities in a rarefied gas flowing in a channel under the action 
of a constant external force in a direction parallel to the walls. Our final aim there was 
to study the transition to turbulence by means of the Boltzmann equation, but we 
remained far from achieving this goal, since our calculations were restricted to a two- 
dimensional geometry. 

Here we report and discuss our computations concerning Taylor's instability of 
Couette flow, another well-known phenomenon in hydrodynamics. The classical case 
of this flow occurs when we consider two coaxial cylinders of infinite length and the 
inner cylinder rotates while the outer one is at rest. At a certain critical value of the 
angular velocity 12 of the rotating cylinder, the Couette flow becomes unstable and 
transforms into the so-called Taylor-Couette flow. This flow is characterized by a 
system of Taylor cells in the form of toroidal vortices, two neighbouring vortices 
rotating in opposite directions. A study of the same phenomenon in the framework of 
kinetic theory has never been attempted before. Our results refer to Knudsen numbers 
of order lo-' and different Mach numbers, based on the velocity of the inner cylinder. 
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FIGURE 1. Geometry and boundary conditions. 

The ranges of these numbers are chosen in such a way as to indicate the onset of 
instability in the cylindrical Couette flow of a rarefied gas. When the Taylor-Couette 
flow appears to be fully developed we extend our study to higher Mach numbers and 
exhibit results that seem to indicate transition to chaotic behaviour. Again the real 
physics of the transition to turbulence escapes these computations because of their two- 
dimensional nature. 

Perhaps one might ask the question: Why solve the Boltzmann equation when 
Kn = Surely it would be sufficient to treat the problem as a perturbation about the 
Navier-Stokes equations. The answer is: well, we do not know. The Knudsen number 
mentioned here is either based on the radius of the inner cylinder or on the gap’s width; 
but what is the Knudsen number to be taken into account in order to describe the 
rarefaction effects in the instability that leads to Taylor cells? From the results one sees 
that the Knudsen number based on the distance over which there is an important 
gradient in a cell is about one fifth of the gap’s width and a factor 5 in the Knudsen 
number completely changes the order of magnitude of the perturbations, which can no 
longer be regarded as ‘small’. The issues that appear in this connection are so many 
that only a study of comparable complexity for the Navier-Stokes equations (including 
compressibility at very large Mach numbers and slip effects) could give us an answer. 
A study that takes into account compressibility, but not slip, has been recently 
published (Hatay, Biringen & Zorumski 1993). The results of that paper seem to 
indicate that the critical Taylor number moves away from its classical value in the 
opposite direction to the results obtained here. This seems to indicate that the 
rarefaction effects play a very important role. It is thus clear that the present paper is 
not the last word on this subject. The authors only claim that they have broken some 
ground and will be quite happy if this paper suggests more advanced work on this 
problem. 

Another issue that has stimulated the study presented here is the question, which is 
frequently raised, concerning the ability of the DSMC technique to faithfully resolve 
vortex motion, owing to the lack of accurate conservation of angular momentum in 
collisions. It seems that the first paper to cast doubts on this ability is Meiburg (1986)’ 
who applied both molecular dynamics and the direct simulation Monte Carlo method 
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to the case of a rarefied flow past an impulsively started inclined flat plate. A clear 
vortex structure was obtained in the wake region of the molecular dynamics 
calculation, but the wake in the direct simulation Monte Carlo method was relatively 
devoid of structure. As pointed out by Bird (1993), the approximations associated with 
either method cannot be tested for the unsteady flow past a plate because this problem 
places excessive demands on computer time. He therefore introduced the forced vortex 
flow produced by a moving wall in a two-dimensional cavity as an alternative test case 
and came to the conclusion that as long as the cell size requirement is met, the non- 
conservation of angular momentum in collisions does not appear to have a significant 
effect on the results of direct simulation Monte Carlo calculations. Bird (1993) also 
examined the values of the parameters in Meiburg’s (1986) calculations and showed 
that the density of the gas was too high to employ the direct simulation Monte Carlo 
method, because the mean free path was of the order of the molecular diameter and the 
size of the cell is too large to analyse the vortical wake structure. The issue of non- 
conservation of angular momentum was addressed by Nanbu, Watanabe & Igarashi 
(1988), who showed that if the cell is sufficiently small, the total angular momentum of 
the molecules in a cell is almost conserved in the Monte Carlo calculations. 

2. Basic equations 
Let us consider a monatomic rarefied gas with average number density no in unsteady 

motion between two coaxial cylinders with equal temperatures T,, located at r = R, 
and r = R,, respectively (see figure 1, which represents the section of half the cylinder 
in the x,y-plane). The inner cylinder rotates with angular velocity Q, while the outer 
one is at rest. The Boltzmann equation reads as follows (Cercignani 1988, 1990; Kogan 
1969) : 

where x = (x,y,z) and 5 = (&, t2, 6,) are the position and velocity vectors of a 
molecule, while 

is the collision operator. Here B(8,15-C,1) is a kernel describing the details of 
molecular interaction, m is the molecular mass, f’, &,f ,  are the same asf, except that 
5 is replaced by <’, el,, f;,. Also, 5, is an integration variable (the velocity of any molecule 
colliding with a molecule of velocity 5 )  while 5‘ and <’, are the velocities of two 
molecules entering a collision which brings them to velocities 5 and 5,. Finally, 19 and 
.s give the direction along which these molecules approach each other. We shall assume 
hard-sphere molecules, in which case B(B,l<-g.J = 2 ]<-<,I cos 8 sin 8, where CT is 
the sphere diameter. 

We should rewrite the Boltzmann equation in cylindrical coordinates (x ,  Y, #), since 
we are looking for solutions independent of 9. We shall not do this here, since we take 
advantage of the cylindrical symmetry by exploiting a method described by Bird 
(1989~) (see the next section). 

The non-dimensional parameters here are the Knudsen number Kn, based on the 
thickness of the gap L = R,- R, (Kn, = h,/L), the speed ratio S = Q R , / K ,  (where 
K h  = (2RT$ is the thermal speed) related to the Mach number Ma by 

Ma = ($S = 1.095 S, 

8 F L M  2 5 6  
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and the Knudsen number Kn, based on the inner cylinder radius R, (Kn, = ho/Rl). The 
basic parameter governing stability should be the Taylor number: 

T =  49' Rt = ($)24Sdn'(5)2L-2(L+R1)4(2L+R1)-2  
v2[1 - (R,/R2)212 

Kn, -' 
= (13.04)s2(Kn1)-2 1 +- 2+- ( $r( Kn,) ' (2*3) 

where we have used the fact that v is given by 

v = (5/16)h0 Kn& (2.4) 

according to the Chapman-Enskog first approximation (Chapman & Cowling 1952), 
which is sufficiently good for our purposes. 

If we are close to the continuum regime, we can then conjecture that the Taylor 
number remains the basic parameter to investigate stability. In the case of Kn, = Kn, 
(i.e. when outer radius is twice the inner radius), the critical value of the Taylor 
number, according to the Navier-Stokes equations (with no slip) is 33110 
(Chandrasekhar 1961, p. 323). 

We complete our formulation with the following initial and boundary conditions: 
(a) at time zero we assume equilibrium with the outer cylinder 

(2.5) f ( 0 ,  x, Y ,  5)  = no n-f G3 exp (- E 2 /  V,",); 

f ( t ,  x, R,, 5 1 = n , d  VG3 exp (- 15 - OR, i 1 2 /  V,",) ( 6 2  B 01, 

f ( l 7  x2 R27 5 = n2 x-t 'A3 exp (- 6 '/ ',",> ( 6 2  O>, 

(b) at the cylinders we assume diffuse reflection of the molecules and hence write 

(2.6) 

(2.7) 

where i is the unit vector along the x-axis (which is also the cylinder axis), while n1 and 
n, are determined by mass conservation at the walls and hence are given by 

(c)  in order to solve the problem numerically we assume that the solution possesses 
a periodic structure in the direction of the x-axis. We denote by 2,f the period in the 
x-direction and, in order to reduce the size of the sample, we simply assume specular 
reflection at x = 0 and x = ,f. 

3. Method of solution 
The main idea on how to simulate rarefied gas flows with cylindrical symmetry is 

explained by Bird (1989a). At the start of each of the time steps At through which the 
molecules are moved, all the molecules are assumed to have the same value of z 
(because we want to treaty as a radial coordinate) and only coordinates xi and yi need 
be stored for the ith molecule, together with the three velocity components &I, 
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(k = 1,2,3). The molecules are moved according to their velocity and acquire certain 
coordinates x:,y,*, z,* ; then the new abscissa is taken to be x: = x:, while the new 
ordinate (actually a radial coordinate) is y: = [ ( ~ t ) ~  + ( ~ 3 ~ 1 : .  The new velocity 
components are computed by taking the components of the previous velocity in the x- 
direction and in the two directions parallel and orthogonal to the vector with 
components x: ,y f .  

The Monte Carlo simulation was devised in agreement with the formulation of 52 
and the above remarks. The basic steps of the simulation are as follows: 

(a) the time interval [0, TI, over which the solution was sought, was subdivided into 
subintervals with step At;  

(b) the space domain was subdivided into cells with sides Ax, A?; 
(c )  the gas molecules were simulated in the gap G with a stochastic system of N 

( d )  at each time there are N ,  molecules in the rnth cell; this number is varied by 

Stage 1. The binary collisions in each cell are calculated without moving the 
particles. 
Stage 2. The particles are moved, with the new initial velocities acquired after 
collision, in a local coordinate system in which y plays the role of radial coordinate 
(no collisions in this stage). 

points having positions x,(t), y i ( t )  and velocities &(t) ; 

computing its evolution in the following two stages: 

(e) Stages 1 and 2 are repeated until t = T. 
(f> The important moments of the distribution functions are calculated by time 

averaging after a regime situation has been reached. 
Let us now describe the two stages of the calculation mentioned in (d) in some detail. 

In Stage 1 we use Bird’s (1989~) ‘no time counter’ scheme, which envisages the 
following two steps : 

Step 1. Computation of the maximum number of binary collisions. Here we replaced 
Bird’s formula 

Ncma, = P m  ( n )  (ng2 I<i -<jI >ma,  At (3.1) 

(where ( n )  is the average density in the cell) with 

where Kell  = nAxA(r2) is the cell volume, if we take into account the fact that we are 
working in cylindrical geometry. Equation (3.2) was proposed by Yanitsky (1991). The 
reason for this replacement is the fact that the number of particles in each cell varies 
in time according to Poisson statistics. Hence Nm(N, - 1) has an average equal to the 
square of the average of N ,  and is thus more appropriate than Nm ( n )  Kel l  in the 
estimate of the number of collisions when the flow is unsteady, given the fact that ( n )  
has a large variance because we have a very small sample size in a cell (Koura 1990). 

Step 2. Ncmus pairs ( i , j )  of particles are randomly chosen. Each of these pairs is 
‘collided’ with probability lei -<# (I& - < j l ) , u , .  If the collisional event occurs, the 
velocities after collisions are calculated in the following way: 

where k is a vector randomly distributed on the unit sphere. Otherwise the velocities 
are left unchanged. 

8-2 
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Kn, Kn, S Stable T Re 
0.05 0.02 2 Yes 966328 180.54 
0.02 0.02 1 Yes 57955 90.27 
0.02 0.02 1.5 No* 130400 135.41 
0.02 0.02 2 No 231822 180.54 
0.02 0.02 3 No 521 600 270.81 
0.02 0.02 6 No 2086400 541.62 
0.02 0.02 8 No 3709155 722.16 
0.02 0.02 10 No 5795555 902.70 
0.02 0.02 12 Noc 8345599 1083.24 
0.02 0.02 15 No" 13034000 1354.05 
0.02 0.01 2 No 2640600 362.08 
0.02 0.005 2 No* 14836207 722.16 
0.01 0.02 2 No 105624 180.54 

TABLE 1. Stability of cylindrical Couette flow (Noc means transition to chaos and No* indicates no 
clear tendency to form a stable vortex). T denotes the Taylor number and Re the Reynolds number. 

In Stage 2 the new positions and velocities of the molecules are computed through 
the equations : I X: = xi+El iAt ,  

Y: = [(Yi + 525 A V  + (532 At)"+, 

The particles with y: < R, or y: >, R, are diffusely reflected according to (2.6)-(2.8); 
the particles with X: < 0 and x: 2 L are re-injected at - x: or 2 i  -xi with specularly 
reflected velocities. 

4. Results and discussion 
The results of our calculations are summarized in table 1, where the cases marked 

'No' correspond to the formation of Taylor vortices, while 'No" indicates that even 
the Taylor cells are not stable and one witnesses the transition to a chaotic motion. In 
the cases indicated 'No* ' there are small vortices with no clear tendency to form a 
stable Taylor vortex. Let us first discuss the results for Kn, = Kn, = 0.02 (i.e. when the 
outer radius is twice the inner radius), since it covers the large majority of the cases that 
we have considered. In this case the critical value of the Taylor number, according to 
the Navier-Stokes equations (with no slip) is 33 110 (Chandrasekhar 1961, p. 323). The 
results in table 1 seem to indicate a value higher than 57955; as in the case of BCnard's 
instability (Stefanov & Cercignani 1992; Cercignani & Stefanov 1992), rarefaction 
(with the associated phenomenon of slip at the boundary) seems to increase the critical 
value. 

One should compare these results with those obtained by Hatay et al. (1993) for 
compressible Navier-Stokes equations at Mach numbers ranging from 0 to 3. It is 
surprising to note that, according to their results, the effect of mere compressibility, 
without rarefaction, is to shift the critical value of the Taylor number in the direction 
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opposite to the one that we find with our kinetic theory calculations. Actually, in their 
paper the Reynolds number Re = QR:/v based on the speed of the inner cylinder is 
used in place of the Taylor number. For this reason, this Reynolds number is also 
shown in table 1. Thus the disagreement with the Navier-Stokes equations seems to be 
higher than one would find by comparing with the classical result for the incompressible 
case. In fact, while a superficial estimate would indicate that the perturbation due to 
rarefaction would lead to a correction of, say, 2 % in the critical Reynolds number and 
of 4% in the Taylor number, the real issue is what is the length to be used in the 
evaluation of the Knudsen number. If, as mentioned in the introduction, one takes the 
length over which there is a significant change of velocity in a vortex, this appears to 
be of the order of magnitude of one-fifth of the gap width and the above corrections 
should be multiplied by 5, and we would have found a satisfactory explanation of the 
numerical results, starting from the classical result holding for incompressible fluids. 
The role of compressibility is less clear and, according to Hatay et al., seems to be 
larger than expected. We remark that their results were not obtained by solving the 
nonlinear Navier-Stokes equations, but rather a linearized version of them about the 
steady axisymmetric solution. The entire question of the role of compressibility seems 
worth a more detailed study in the future. 

The other cases correspond to values of the parameter 7 = Kn,/(Kn, + Kn,) of $, $, 
2, $; thus strictly speaking we cannot consider 33 110 as the critical value of the Taylor 
number according to the Navier-Stokes equations. The fact that for Kn, = 0.02 and 
Kn, = 0.005 there is no clear tendency to form a stable vortex is perhaps, however, to 
be thought of as an indication of a transition to a chaotic motion. This type of 
dynamics is more clearly exhibited for higher values of the Taylor number. 

We should also mention that our results refer to a choice of the thickness i equal 
to 4L. We did some calculations with = L and i = 2L which showed a not too 
strong dependence of the results upon the ratio i / L .  In any of these cases the vortex 
size was between :L and L. The distance L  ̂ was chosen to be large enough to obtain a 
set of vortices and was otherwise limited by problems related to computer memory and 
computation time. 

The phenomena that we examine show up in flows with relatively small Knudsen 
numbers. The DSMC method requires the cell size to be less than or, at the very least, 
of the same order of magnitude as the mean free path. If we take into account these 
two requirements, we should carry out our calculations with a large number of particles 
and a grid with a large number of cells. These considerations led us to consider a 
rectangular domain of 400 x 100 = 4 x lo4 cells with an average number of particles per 
cell equal to 5 or 10. This means that we must consider from 2 x lo5 to 4 x lo5 
molecules. 

The final results to be presented here are obtained with an additional averaging over 
groups of cells (5  x 5 )  and thus refer to a mesh 80 x 20. For the purpose of commenting 
we subdivide the figures into four groups. 

(a)  Group I 
In figures 2(aF2(c)  we present the velocity vector fields for some cases with Kn, = 

Kn, = 0.02, indicated in table 1 above, for which the pure Couette flow is unstable. 
These are a pictorial illustration of the table and the discussion given above. 

(6) Group I1 
The first five figures of this group (figures 3-7) show the isolines and three- 
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FIGURE 3. Isolines and three-dimensional plot of the number density n(x,y) for 
Kn, = Kn, = 0.02, S = 3. 

dimensional plots of density, Mach number, velocity components in a typical case 
(Kn, = Kn, = 0.02, S = 3). One sees that, while the first two quantities and the z- 
component of velocity seem to be more sensitive to the stratification induced by 
rotation than to the presence of vortices, the isolines of the velocity components in the 
(x ,y)  section of the cylinder create a vivid picture of what is going on when Taylor 
vortices are formed. Figure 8 shows the velocity contours in the case in which the 
Taylor vortices have disappeared and a chaotic motion is seen. 

(c) Group I11 
In this group we could present a large number of pictures showing the behaviour of 

the energy spectral density as a function of the frequency. These pictures show that 
there is a largely dominating frequency for low values of the Taylor number, while 
other modes grow when the Taylor number increases. We refrain from presenting all 
the details and show only one picture (figure 9) which exhibits the energy spectral 
density of the dominating mode (in a logarithmic scale) as a function of the speed ratio 
S (for Kn, = Kn, = 0.02). To be precise, we considered the fast Fourier transform 
of the x-component of velocity with respect to x for three values of y / h  (51.25, 
56.25, 73.25). The largest values of E = $i6J2 occurred at y / h  = 56.25 for all values 
of S.  These largest values are plotted in figure 9 versus S ;  the maximum of the curve 
(here normalized to unity) occurs for S = 6; this means that in this case the Taylor cells 
form a very coherent and symmetrical structure well beyond any kind of fluctuation. 
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FIGURE 4. Isolines and three-dimensional plot of the x-component of velocity, V,(x,y) for 
Kn, = Kn, = 0.02, S = 3. 
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FIGURE 5. Isolines and three-dimensional plot of the y-component of velocity, 
V,(x,y) for the same case as figure 3. 
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FIGURE 6. Isolines and three-dimensional plot of the z-component of velocity, 
c ( x , y )  for the same case as figure 3. 
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FIGURE 7. Isolines and three-dimensional plot of the Mach number Mu(x,y) 
for the same case as figure 3. 
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FIGURE 8. Isolines and three-dimensional plot of the x-component of velocity, 
V,(x,y)  for Kn, = Kn, = 0.02, S = 15. 
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S 
FIGURE 9. The energy spectral density of the dominating mode as a function of the speed ratio S 

(for Kn, = Kn, = 0.02). The highest value is normalized to unity. 

From the velocity field pictures, some of which are shown in Group I above, we see that 
at S = 6 we have a reduction of the number of cells in the gap from 5 to 4. After 
S = 6 the cells are less symmetrical and for S = 8 one begins to see some sign of 
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FIGURE 10. The mean profile of density for Kn, = Kn, = 0.02; the average is taken with respect to x. 
The profiles refer to S = 1.5, S = 2, S = 3, S = 6, S = 15 (in this order downward at y / h  = 50). 
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FIGURE 11. The mean profile of z-component of velocity for Kn, = Kn, = 0.02; the average is taken 
with respect to x .  The profiles refer to S = 15, S = 6, S = 3, S = 2, S = 1.5 (in this order downward 
at y / h  = 50). 

instability; the power density of the dominating mode is reduced by a factor 50 with 
respect to the maximum and continues to decrease. When chaotic behaviour is 
established, some coherence is still present, because the energy of the dominating mode 
is about 250 times smaller than the highest value, but still 7 to 10 times larger than the 
statistical noise present in laminar flow. This clearly indicates that the chaotic 
behaviour shown by the calculations has nothing to do with the statistical noise of the 
Monte Carlo method. 

( d )  Group IV 
These pictures (figures 1&13) are the mean profiles of density, z-component of 

velocity, Mach number and temperature for Kn, = Kn, = 0.02; the average is taken 
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FIGURE 12. The mean profile of Mach number for Kn, = Kn, = 0.02; the average is taken with 
respect to x, for the same S values as figure 11, 
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FIGURE 13. The mean profile of temperature for Kn, = Kn, = 0.02; the average is taken with 
respect to x, for the same S values as figure 11, 

with respect to x. An interesting feature is the change of curvature in the velocity and 
Mach number profiles. For S = 1.5, the profiles are convex everywhere, but for higher 
values of S,  they show an inflexion point. It should be noticed that the profile of the 
Mach number for S = 15 crosses the profile corresponding to S = 6 rather close to the 
inner cylinder. 

5. Concluding remarks 
We have discussed the results arising from a numerical simulation of the behaviour 

of a monatomic rarefied gas in a flow between two cylinders, when the inner cylinder 
rotates. The gas clearly exhibits an instability for a Taylor number of the order of the 
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critical value for fluids governed by the Navier-Stokes equations; beyond that value, 
Taylor vortices appear. At another critical number a new instability occurs and a 
transition to chaotic dynamics is witnessed. A clear transition to turbulence cannot be 
completely uncovered, however, because our calculations are intrinsically two- 
dimensional. 
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